
GPU-FS-kNN: A Software Tool for Fast and Scalable kNN
Computation Using GPUs
Ahmed Shamsul Arefin1, Carlos Riveros1,2, Regina Berretta1,2, Pablo Moscato1,2,3*

1 Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia, 2 Hunter Medical

Research Institute, Information Based Medicine Program, John Hunter Hospital, New Lambton Heights, New South Wales, Australia, 3 Australian Research Council Centre

of Excellence in Bioinformatics, Callaghan, New South Wales, Australia

Abstract

Background: The analysis of biological networks has become a major challenge due to the recent development of high-
throughput techniques that are rapidly producing very large data sets. The exploding volumes of biological data are craving
for extreme computational power and special computing facilities (i.e. super-computers). An inexpensive solution, such as
General Purpose computation based on Graphics Processing Units (GPGPU), can be adapted to tackle this challenge, but the
limitation of the device internal memory can pose a new problem of scalability. An efficient data and computational
parallelism with partitioning is required to provide a fast and scalable solution to this problem.

Results: We propose an efficient parallel formulation of the k-Nearest Neighbour (kNN) search problem, which is a popular
method for classifying objects in several fields of research, such as pattern recognition, machine learning and bioinformatics.
Being very simple and straightforward, the performance of the kNN search degrades dramatically for large data sets, since
the task is computationally intensive. The proposed approach is not only fast but also scalable to large-scale instances.
Based on our approach, we implemented a software tool GPU-FS-kNN (GPU-based Fast and Scalable k-Nearest Neighbour)
for CUDA enabled GPUs. The basic approach is simple and adaptable to other available GPU architectures. We observed
speed-ups of 50–60 times compared with CPU implementation on a well-known breast microarray study and its associated
data sets.

Conclusion: Our GPU-based Fast and Scalable k-Nearest Neighbour search technique (GPU-FS-kNN) provides a significant
performance improvement for nearest neighbour computation in large-scale networks. Source code and the software tool is
available under GNU Public License (GPL) at https://sourceforge.net/p/gpufsknn/.

Citation: Arefin AS, Riveros C, Berretta R, Moscato P (2012) GPU-FS-kNN: A Software Tool for Fast and Scalable kNN Computation Using GPUs. PLoS ONE 7(8):
e44000. doi:10.1371/journal.pone.0044000

Editor: Alexandre G. de Brevern, UMR-S665, INSERM, Université Paris Diderot, Ints, France

Received January 30, 2012; Accepted July 27, 2012; Published August 28, 2012

Copyright: � 2012 Arefin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The project had partial support from the ARC Centre of Excellence in Bioinformatics and from The University of Newcastle, supporting ASA with a PhD
scholarship. The other authors are employees of The University of Newcastle. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Pablo.Moscato@newcastle.edu.au

Introduction

The analysis of biological networks is an important task for

gaining insights into the massive amount of data generated by

high-throughput technologies (e.g., microarrays). Biological mol-

ecules such as proteins, genes, metabolites or microRNAs act as

nodes in a biological network and the functional relationships

between them are considered as edges. One essential task in the

biological network analysis is to determine the nearest neighbours

of some nodes of interest. When we are not given a network but a

set of points in high-dimensional space, this simple problem

actually turns into a computationally expensive optimization

problem for finding the closest points of some query points in a

metric space. Formally, for a set R of m reference points and a set

Q of n query points in a d-dimensional space, the kNN search

problem identifies the k-nearest neighbours of each query point

q[Q in the reference set R, given a distance metric [1]. This

method is commonly used in predictive analytics to classify a point

based on the relationship to its neighbours. For example, if the

majority of the neighbours of a query point belong to a certain

class, then a verdict can be made that the query point q belongs to

this class.

The kNN search problem arises in several fields of research,

such as information retrieval, computer vision, databases, data

compression, internet marketing, plagiarism detection, cluster

analysis, etc. In 1973, D. E. Knuth called this problem, the post-

office problem, referring it as the assignment of a residence to the

nearest post office [2].

The basic kNN search technique is simple and straightforward

and one can use an exhaustive search technique (also known as

brute force approach) to find the nearest neighbours of a point.

However, the actual computation of the distances and the nearest

neighbours for large-scale instances requires a large number of

computations. Several sequential approaches were proposed in

[3,4] to tackle this problem when an approximate solution is

sufficient.

Interestingly, the basic brute force approach that gives the exact

solution to this problem is highly parallelizable as the nearest

PLOS ONE | www.plosone.org 1 August 2012 | Volume 7 | Issue 8 | e44000

neighbours of each query point can be computed and searched

independently. This particular feature influenced us to create a

GPU based data parallel solution for this problem. We have

concentrated on a special case of the kNN-based optimization

problem, in which the objective is to produce a kNN graph such that

every node is connected to its k-nearest neighbours. The

construction of the such graphs is an essential task in many fields

of scientific research, such as data mining [5,6], manifold learning

[7,8], robot motion planning [9], computer graphics [10] and

bioinformatics [11–13]. We applied our proposed approach on

microarray gene expression feature sets, considering the outcome

can easily be integrated with existing graph-based clustering

algorithms [14–16]. Furthermore, the basic idea can be adapted to

scale the performance of other existing GPU-based kNN search

methods [17,18] and additionally, the implementation can be

easily ported to other GPU architectures by incorporating simple

modifications.

GPGPU Programming Model
The GPGPU is a powerful device that is devoted to parallel data

processing rather than data caching and flow control as a general

purpose CPU. Massive parallel processing capability of GPU

makes it more attractive for algorithmic problem solving, where

the processing of data (or a large block of data) can be handled in

parallel. In general, the GPUs are organized in a streaming, data-

parallel model in which the processors execute the same

instructions on multiple data streams simultaneously. They are

composed of a set of stream multi-processors (SM) with a certain

number of stream processors (SP) each. Each SM contains a fast

shared memory, which is shared by all of its processors.

Additionally, a set of local registers is available for each SP (local

memory). The typical sizes for shared memory are 16 K and

48 KB and local memory are 16 KB and 512 KB, depending on

device compute capability [19]. The SMs communicate through

the global/device memory which is much larger in terms of size

but significantly slower than the other memory types (e.g., texture,

constant, shared and local). The memory bandwidth and the peak

floating-point capability of the GPU are much higher than the

CPU. At the software level, there exist several programming

interfaces (e.g., CUDA, OpenCL, DirectCompute or the most

recent innovation like OpenACC) that enable programmers to

develop applications on GPU. Among them, NVIDIA’s CUDA

(Compute Unified Device Architecture) is one of the most widely

used programming models that enable developing GPU-based

applications using C/C++ programming language. Additionally, a

number of third party CUDA wrappers are available for Python,

Perl, Fortran, Java, Ruby, Lua, Haskell, MATLAB etc. CUDA

exposes a higher level of abstraction to the programmers so that

they can parallelize their tasks on GPU: a parallel task is

instantiated as a collection of threads, organized in blocks (a 1, 2

or 3- dimensional collection of threads, where a limited amount of

shared memory is available to all the threads in a block), arranged

in a grid (a 1 or 2-dimensional collection of blocks). Maximum

thread number in a block can be up to 1024 in the most recent

architectures (e.g., ‘‘Fermi’’) and maximum block number in a grid

can be up to (216–1), in at most three dimensions. It should be

noted here that thread, block and grid are CUDA specific terms. A

CUDA program typically consists of a host component that runs

on the CPU, or host, and a smaller, but computationally intensive

device component called kernel, that runs in parallel on the GPU.

The kernel cannot access the main memory of the host directly;

input data for the kernel must be copied to the GPU’s on-board

memory prior to its invocation, output data from the kernel must

first be written to the GPU’s memory and then copied back to the

host CPU memory.

The Brute Force KNN Search
The brute force approach computes similarity distances from

each query point to all the reference points using a predefined

metric (i.e. Euclidean, Manhattan, Pearson’s, Spearman’s, etc.). Then,

the k-nearest neighbours are selected by sorting the distances. The

complete method is described in Figure 1, Algorithm 1). Although

the approach is very simple and straightforward, behind this

apparent simplicity, there exists a high computational complexity.

For instance, if we have a data set with n query points and m
reference points in a d-dimensional space, then, O((mnd)) time is

required for the distance computation and O(nm log m) for

sorting, therefore, a total O(mnd)zO(mn log m) work is required

for the complete computation. Now, to construct the kNN graph,

we need to consider each data point both as a query point and a

reference point (i.e., query < reference). Therefore, the kNN

search needs to be performed on n~m points and subsequently,

the run time complexity becomes O(n2d)zO(n2 log n). For a

large number of points, the method can easily become prohibitive

on general purpose computers. Fortunately, such distance

computation and search can be performed independently for

each query point. Therefore, one practical solution to improve the

speed-ups is to parallelize the task. In the following section we

explain the existing parallel brute force kNN search methods.

Existing Data-Parallel Approaches
A number of highly parallel approaches have been developed to

reduce the computational overhead of the brute force kNN search

problem. Garcia et al. [17] proposed the first GPU-based kNN

searching algorithm that is at least 10 times faster than the

sequential CPU implementation. The authors have demonstrated

their algorithm with comb sort and insertion sort. Later, this

implementation was studied by Nolan [20] and the author

Figure 1. Pseudo-code for the Brute Force kNN Algorithm. The run time complexity of the algorithm is O(mnd)zO(mn log n), considering a
total of n query points and m reference points in a d-dimensional space.
doi:10.1371/journal.pone.0044000.g001

GPU-FS-kNN: A Fast and Scalable kNN Using GPUs

PLOS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e44000

attempted to improve the performance of the algorithm using

bitonic sort and a variant of bubble sort. The author also identified

that the increase in the value of k dramatically decrease the

performance of insertion sort based kNN implementation, while it

remains comparatively stable with bitonic sort. Quansheng et al.

[21] proposed a GPU-based implementation of brute-force kNN

computation using the CUDA-based radix sort [22] that is at least

12 to 13 times faster than the sequential counterpart. They utilized

a segmentation method for distance computation, which is similar

to the distance computation method in [23,24]. The implemen-

tation uses fixed size tiles (e.g., 16|16) to construct the segments

and the tile size depends on the available shared memory per

CUDA blocks which is practically very limited (e.g., 16 KB or

48 KB) and hence, the method highly increases the number of

data movements. Additionally, they proposed to classify the query

points on CPU as it is difficult to optimize using GPUs. Liang

et al. [18] proposed another CUDA-based parallel implementa-

tion of kNN algorithm, namely CUkNN, where they make use of

streaming and coalesced data access for better performance. The

implementation computes a set of distances by each CUDA block

and outputs the local-k nearest neighbours and subsequently, it

finds the global-k nearest neighbours when a set of blocks is

finished. They achieved speed-ups of 21.81 times compared to

sequential quick-sort based kNN and 46.71 times over an insertion

sort based kNN. The implementation is suitable for small values of

k up to 20, because of the limited amount of shared memory per

CUDA block. Sun et al. [25] proposed a distributed approach for

solving the kNN problem on large instances. They have proposed

two layers of parallelization. In the first layer, which is an MPI-

based layer, they distribute the data to several GPU enabled

nodes. In the second layer, which is a CUDA layer, they compute

the k-nearest neighbours for each query point. Finally, all the

results are combined in the merging step. They have conducted

tests on 96 nodes, where each node contains at least two GPUs

and achieved speed-ups of over 80 times compared to the single

GPU. However, the experiments are performed using a very

expensive hardware i.e., on a supercomputer from NCSA (http://

www.ncsa.illinois.edu) and limited values of k(ƒ20): There exist

many other parallel and distributed approaches to solve different

special cases of the problem(see a detailed review in [26,27]).

However, many of the existing approaches often assume that the

value of k is limited (e.g., Liang et al.[18], see the discussion

above), the dimension of the data points is low (e.g., Connor

et al.[26], the method is fairly scalable to large data sets but can

work only with limited dimensions, dƒ3) and sometimes the

method itself is not scalable to very large instances (e.g., Garcia

et al. [17], the method requires to compute and store a complete

distance matrix of size m|n, therefore, for large values of these

variables (over 65,536), it becomes infeasible). In this work, we

scaled and parallelized the simple brute force kNN algorithm (we

termed our algorithm GPU-FS-kNN). It can typically handle

instances with over 1 million points and fairly larger values of k
and dimensions (e.g., tested with k up to 64 and d up to 295) on a

single GPU. On multiple GPUs, if data partitioning is applied,

then the method is capable of handling much larger instances and

higher dimension sizes.

Results

The computational tests are performed on following hardware

setup: a total of four NVIDIA Tesla C2050 GPU cards are

installed on a X8DTG-Q Supermicro server that has 2| Intel

Xeon E5620 2.4GHz processors, 32GB of 1066 MHz DDR3

RAM and 800GB of Local Hard Disk. To perform a fair

comparison between speed-ups/cost ratio we also measured the

performance on a GeForce GTX 480 (See Table 1 for the

hardware details). The programs are written in C++ and CUDA

(toolkit 4.0) and compiled using the g++ v4.4.4 and nvcc compilers

on a Linux x86_64 version 2.6.9. The computational times are

measured using CUDA timer utility [19].

Preprocessing
We evaluate the performance of our proposed method on a

renowned breast cancer gene-expression study data set provided

by van de Vijver et al., [28] (see also van’t Veer et al. [29]). The

original data set is available at http://bioinformatics.nki.nl/data.

php, and has a total of 24,479 biological oligonucleotides and

1,281 control probes in 295 breast cancer patients. For this

experiment we utilized the published log ratio of a total of 24,158

probe sets (mainly targeting genes) for all the 295 samples. The

published clinical data gives the clinical metastasis (in terms of years

to relapse for each patient); we consider this as a phenotypical dummy

probe and keep it as a row (i.e., with the same status of a gene

expression probe) in the input matrix. Our aim is to identify the

nearest neighbors to this phenotype and derive a list of k genes

whose expression profiles closely match with the clinical metastasis.

Note that this is possible because the measure used as metric

(Pearson’s correlation) is insensitive to difference of scale between the

two sequences (data for each probe) being compared.

To get a more diversified list and also to test the scalability of the

proposed method, we extended our search space as follows: first,

we filtered the probes sets using Fayyad and Irani’s algorithm [30].

This step is supervised and aims at finding differentially expressed

probe sets in the samples labeled metastasis (relapsed in first five

years) versus the ones that are labeled non-metastasis (relapsed after

first five years). Next, we refined the selection of probe sets using

Table 1. Summary of hardware, CPU and GPUs used for running our experiments.

Processor CPU GPU_A GPU_B

Commercial Model 26Xeon (Intel) E5506 Quad-Core GeForce GTX 480 Tesla C2050

Number of Cores 268 @ 2.66 Ghz 15 @ 772 MHz 14 @ 575 MHz

SIMD components – 480 @ 1.15 GHz 448 @ 1.54 GHz

Memory Size 32 Gb (DDR3) 1.5 Gb (GDDR5) 4 Gb (GDDR5)

Interface to System – PCI-e 616 Gen 2 PCI-e 616 Gen

The Tesla C2050 used in this experiment is a commodity product in the marketplace with price ranging from USD $1,500*$ 2,000. It has 515 Gflops of double precision
floating point performance (peak), 1.03 Tflops of single precision floating point performance (peak) and 144 GB/s memory bandwidth. On the other hand, GeForce GTX
480 is based on refreshed a ‘‘Fermi’’ architecture and much cheaper commodity product with price ranging from USD $500*$600.
doi:10.1371/journal.pone.0044000.t001

GPU-FS-kNN: A Fast and Scalable kNN Using GPUs

PLOS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e44000

the (alpha-beta)-k-Feature set method [31–35]. At this stage, we

obtained a set of 876 filtered and refined expression profiles. Then,

we produced two expanded data sets, one by applying the

difference({) operator between each possible pair of filtered probes

and the other by applying four different operators: difference({),
summation(z), product(|) and division(7): These unique probe

pairs are termed as metafeatures in Rocha de Paula et al. [36]. We

call these two artificial data sets as expanded_A and expanded_B,

containing 384,126 and 1,533,876 elements, respectively, where

each of them has all the filtered probe sets and relevant

metafeatures, for all 295 patients.

Application
We applied the proposed method on each of these three data sets

(original, expanded_A and expanded_B). A kNN graph (k~1) from

the original data set is visualized in Figure 2 using the freely available

yEd software (http://www.yworks.com/). Zooming into the cluster

that contains the clinical metastasis (the dummy probe) brings out an

interesting list of genes that are comparatively less highlighted in the

original publication [28], but definitely warrant further investigation.

For instance, Ferroportin (solute carrier family 40 (iron-

regulated transporter), member 1- SLC40A1), which is one of the

less highlighted genes in the original work (see the Supplementary

Table 3 (http://bioinformatics.nki.nl/data/nejm_table3.zip), Vij-

ver et al.[28]), showed interesting results in our experiments.

When we applied the method (for k~1) to the expanded_A data set

and subsequently identified the cluster that contains the clinical

metastasis, we not only found the multiple appearances of

Ferroportin in several metafeatures (Figure 3(a)) but we also found

certain metafeatures containing this particular gene to show better

correlations with the clinical metastasis. For example, along with our

previous investigation of (BCAR1 - SLC40A1) (see [15]), we found

(ARF1 - SLC40A1) to show a better correlation than either the

individual probe sets alone (e.g., genes ARF1 (ADP-ribosylation

factor 1) or SLC40A1 (Ferroportin-1)). (Figure 3(b)–(d)). These

results indicate that, for those tumors that may relapse (and for

which a different genetic signature may need to be found), the joint

expression of (ARF1) [37] or Breast Cancer Anti-estrogen

Resistance 1 (BCAR1) [38] and Ferroportin (SLC40A1)[39–42]

may be associated to the time to relapse. Application of the

Figure 2. A kNN (for k = 1) graph from the breast cancer dataset with 24,158 probe sets in [28]. Zooming into the cluster containing only
the clinical metastasis, brings out a list gene that are less highlighted in [28] but interesting enough to warrant further investigation. For instance,
Ferroportin (solute carrier family 40 (iron-regulated transporter), member 1- SLC40A1) is one of less correlated gene in the original publication (see
the Supplementary Table 3 (http://bioinformatics.nki.nl/data/nejm_table3.zip) of van de Vijver et al. [28]), but recent studies suggest that low level of
Ferroportin increases breast cancer recurrence risk [39–42]. We utilized the freely available yEd software (http://www.yworks.com/) to visualize this
graph.
doi:10.1371/journal.pone.0044000.g002

GPU-FS-kNN: A Fast and Scalable kNN Using GPUs

PLOS ONE | www.plosone.org 4 August 2012 | Volume 7 | Issue 8 | e44000

method to the expanded_B data set (not shown) also gave multiple

appearances of Ferroportin in several metafeatures (with the clinical

metastasis). In the same direction, other identified genes can be

further investigated for their correlation with metastasis and breast

cancer recurrence.

Performance
The performances of the proposed method on two different

GPUs, a GeForce GTX 480 (GPU_A) and a Tesla C2050

(GPU_B), over the CPU implementations (single core and multi-

core) are demonstrated in Table 2. Our single threaded CPU

Table 2. Running time comparisons for the kNN graph computation on GTX 480 (GPU_A) and Tesla C2050 (GPU_B).

Datasets Size 1 CPU 16 CPUs ChunkSize 1 GPU(A) 1 GPU(B) 4 GPUs(B)

original 24,158 60.22 10.58 (5.7x) 4,096 5.53 (10.3x) 5.18 (11.6x) 2.25 (26.8x)

16,384 4.12 (14.6x) 3.25 (18.5x) 1.83 (32.9x)

32,768 – 2.42 (27.4x) 1.22 (49.4x)

expanded_A 384,126 520.57 58.50 (8.9x) 4,096 42.57 (12.2x) 30.55 (17.1x) 15.28 (34.1x)

16,384 30.25 (17.2x) 25.32 (20.6x) 12.15 (42.9x)

32,768 – 18.65 (27.9x) 10.59 (49.2x)

expanded_B 1,533,876 1740.52 350.75 (4.8x) 4,096 88.48 (19.7x) 72.43 (24x) 40.57 (42.9x)

16,384 79.53 (21.9x) 63.15 (27.6x) 36.84 (47.2x)

32,768 – 54.37 (32x) 30.13 (57.8x)

The performance showed in terms of running times (in minutes) and speed-ups (x), on four different configurations, single threaded (1 CPU thread), multi-threaded
(16 CPU threads), single GPU (GTX 480 (GPU_A) and Tesla C2050 (GPU_B), see Table 1) and multi-GPUs (4 Tesla C2050 GPUs). The time measurements are performed
upon repeated executions of the method on each of these data sets and they include the times for loading and transferring data from the to and from the host and
device memory. An increase in the chunk size (i.e., increased amount of computations on GPUs) performed better utilization of the parallel hardware and improved the
overall the speed-ups. However, the execution times for the single and multi-core CPU implementations remained unchanged with chunk size variations due to the
absence of computational chunking and higher chunk sizes could not be applied on GTX480 (GPU_A) due to its limited device memory (1.5 GB approximately). A total
of 295 samples and a single value for k (k~20) are used to perform these tests.
doi:10.1371/journal.pone.0044000.t002

Table 3. Running time comparisons of kNN computation for ANN-C++, BF-CUDA-kNN and GPU-FS-kNN on Tesla C2050.

Dim Method n = 10,000 n = 25,000 n = 50,000 n = 100,000 n = 1,533,876

8 ANN-C++ 0.06 0.16 1.22 5.21 –

BF-CUDA-kNN 0.01 0.09 0.25 – –

GPU-FS-kNN 0.01 0.15 0.51 1.15 20.52

16 ANN-C++ 0.45 1.57 5.68 10.51 –

BF-CUDA-kNN 0.01 0.11 0.29 – –

GPU-FS-kNN 0.01 0.21 0.65 1.48 21.25

20 ANN-C++ 0.48 1.55 6.11 12.23 –

BF-CUDA-kNN 0.01 0.15 0.35 – –

GPU-FS-kNN 0.01 0.25 0.68 1.55 21.43

32 ANN-C++ – – – – –

BF-CUDA-kNN 0.01 0.25 0.81 – –

GPU-FS-kNN 0.01 0.40 1.14 1.87 23.56

64 ANN-C++ – – – – –

BF-CUDA-kNN 0.02 0.65 2.22 – –

GPU-FS-kNN 0.03 0.78 2.15 3.65 25.52

96 ANN-C++ – – – – –

BF-CUDA-kNN 0.03 0.82 2.53 – –

GPU-FS-kNN 0.05 1.12 3.75 4.53 26.76

295 ANN-C++ – – – – –

BF-CUDA-kNN – – – – –

GPU-FS-kNN 0.12 1.25 6.52 7.58 28.95

Comparison of the computation times (in minutes) of three different methods, sequential ANN-C++ [4], BF-CUDA-kNN[17] and our proposed method GPU-FS-kNN (on
multi-GPUs). All the GPU-based tests are performed on Tesla C2050 (GPU_B) and the elements are derived from the expanded_B data set. Here, n represents the data set
size and the values of k are determined as, k = i.e., 10, 11, 11, 12 and 15, respectively.
doi:10.1371/journal.pone.0044000.t003

GPU-FS-kNN: A Fast and Scalable kNN Using GPUs

PLOS ONE | www.plosone.org 5 August 2012 | Volume 7 | Issue 8 | e44000

implementation is based the brute force kNN algorithm (Figure 1,

Algorithm 1) and the multi-threaded version is implemented by

incorporating an OpenMP loop [43] inside the sequential

implementation. We divide the total computation task in chunks,

or piece of the total computation being submitted to the GPU as a

single computational task (see Design and Implementation section

for details). However, the proposed chunking method is not

applied in these CPU implementations, as it may introduce further

computational overhead. In each implementation, distances

(similarities) computed using the Pearson’s correlation function.

Performance-wise, during the single GPU execution, a maxi-

mum of 21.96 and 326 speed-ups are observed for the GPU_A

and GPU_B, respectively. An increase in the chunk size (i.e., an

increased amount of computations on the GPUs) increased the

parallel hardware utilization and improved the overall speed-up.

However, due to the limitation of the device memory, larger chunk

sizes could not be applied on GPU_A. Additionally, multi-GPU

tests are performed on the GPU_B only, since because the test

system had only one GPU_A. The method is designed in a such

way that an increase in the number of GPUs can further increase

the execution speed-up. Therefore, we observed the maximum

speed-up during the multi-GPU tests. Utilizing the largest chunk

size (32,678), we obtained a maximum speed-up of 57.86 on the

largest test data set (with over 1.5 M elements).

In Figure 4, we illustrate the performance of our proposed

method for different values of k (with sample size of 100) and

sample sizes (with fixed value of k = 20) on the expanded_A data set.

The Figures 4(a) and (b) depict that even with an increase in the

value of k or sample size, the execution times remained

comparably stable on the GPU-based implementation. In

Figure 4 (c), we illustrate the execution times observed for the

Distance kernel, kNN Kernel and data transfer from host to

device. To measure this, we utilized the GPU_B, a fixed value for

k (k~20) and all the 295 samples. This figure illustrates that the

distance computation takes most of the execution time and further

optimization to this kernel (e.g., vectorization) can improve the

overall speed-ups.

In Table 3, we compare the performance of our proposed method

with respect to two other known kNN computation methods, a k2d

tree based sequential approximate nearest neighbour (ANN-C++)

computation [4] and a bruteforce algorithm based parallel kNN

computation on GPU (BF-CUDA-kNN) [17]. In general, ANN-C++
is faster than our CPU implementation (not shown in table) but it

could run only on a limited number of dimensions (dƒ20) and the

other GPU-based kNN (BF-CUDA-kNN) executed slightly faster

than ours but it could only work on a limited number of elements

(nƒ 65,536, where n is the number of elements). On the other hand,

the proposed approach could successfully perform the kNN

computation on the largest test data set (1.5 M elements and 295

samples). These tests are performed using GPU_B and the elements

derived from the expanded_B data set.

Methods

The proposed method (GPU-FS-kNN) operates on a simple

partition and distribution of data and distance computation. In this

Figure 3. Application on the expanded_A dataset with 384,126 probe sets. Figure (a) shows of a kNN graph from the from Expaneded_A
considering the clinical metastasis (year to relapse, a phenotypical ‘‘dummy’’ gene in the data set) as a sample query point. The multiple appearances
of Ferroportin (SLC40A1) is noticeable in its neighboring metafeatures. The complete graph could not be visualized due to the limitation of existing
tools [50]. Figure (b)–(c) show the correlation of ARF1 (ADP-ribosylation factor 1) and SLC40A1, (Ferroportin-1) with the the clinical metastasis,
respectively. (d) The metafeature (ARF1-SLC40A1) shows better correlation with the clinical metastasis of each patient with respect to the feature (i.e.,
the ARF1, ADP-ribosylation factor 1, or SLC40A1, (Ferroportin-1) alone. This data indicates that, for those tumors that may relapse (and for which a
different genetic signature may need to be found), the joint expression of ARF1 and Ferroportin may be associated to time to relapse.
doi:10.1371/journal.pone.0044000.g003

GPU-FS-kNN: A Fast and Scalable kNN Using GPUs

PLOS ONE | www.plosone.org 6 August 2012 | Volume 7 | Issue 8 | e44000

work, we only discuss the details of the computational partitioning

i.e., chunking of the distance matrix and subsequent identification

method of kNNs from the chunks.

Data Structures
The input data set is represented in the form of a matrix, where

each row represents a point and the respective columns represent

the dimensions of the point. The complete input matrix contains

Figure 4. Performance of the GPU-FS-kNN. Figure (a) and (b) show the computation times observed for different values of k (with a fixed
sample size of 100) and sample sizes (with a fixed value of k~20), respectively, on the expanded_A data set. It is evident from these figures that even
with an increase in the value of k or sample size, the execution time remains comparably stable on the GPU-based implementation. Figure (c) shows
the computation times observed for the Distance kernel, kNN Kernel and data transfer from host to device on the three data sets, using a single GPU,
k~20 and a total of 295 samples. Although the distance computation takes most of the execution time here, further optimization to this kernel (e.g.,
vectorization) can improve the overall speed-ups.
doi:10.1371/journal.pone.0044000.g004

GPU-FS-kNN: A Fast and Scalable kNN Using GPUs

PLOS ONE | www.plosone.org 7 August 2012 | Volume 7 | Issue 8 | e44000

nrow number of rows and ncol number of columns. Since, CUDA

programming API does not support the transferring of multidi-

mensional arrays from the host to device memory [19], we store

the input matrix in a single dimensional array In of length

(nrow|ncol), the distance matrix chunks in a single dimensional

array D of length (nchunksize|nchunksize), given a fixed chunk size,

nchunksize and the resultant kNN graph (Gk) in an array of 3-tuples

{source, target, weight} of length (k|nrow). Additionally, we store

Figure 5. Basic principle of the proposed method. Figure (a) shows two kernels that execute sequentially, the first one creates the distance
matrix and the second one identifies the nearest neighbours. Figure (b)–(c) shows the proposed method of computing kNN using chunk, split and
segment of the original matrix. The original matrix is never kept in the device memory, each time a chunk is computed and respective kNNs are
identified. Figure (d) shows an illustrative chunking of data for further scalability by splitting the data set horizontally into n number of data chunks.
doi:10.1371/journal.pone.0044000.g005

GPU-FS-kNN: A Fast and Scalable kNN Using GPUs

PLOS ONE | www.plosone.org 8 August 2012 | Volume 7 | Issue 8 | e44000

the location of the farthest k nearest neighbours for each row index

(chunk) in an array Maxk to facilitate the kNN search.

Basic Principles
The proposed method has two different CUDA kernels that are

executed one after another. The first kernel (Distance Kernel)

calculates the sub-matrices (chunks) of the original distance matrix,

where the second kernel (kNN Kernel) identifies the kNNs from

from these chunks. When the original distance matrix completely

fits into device in-memory, we consider the whole distance matrix

as a single chunk (i.e., nrow~nchunksize), we simply execute the

Distance kernel to produce the distance matrix and then, we

invoke the kNN kernel to identify the kNNs list and subsequently

we create the kNN graph from the list (Figure 5(a)–(b)). In such

case, only the value of k is required as an external parameter.

On the contrary, when the complete distance matrix is too large

to fit into the device’s in-memory, we it break down into several

chunks, where the size of the chunk (nchunksize) is provided as an

external parameter, in addition to the value of k. We consider all

the chunks that share the same rows in the matrix are in a same

split and we get a partial kNN graph when all the chunks in a split

are computed. Then, when all the splits in the distance matrix are

computed, we get the complete kNN graph. However, at this

point, we only achieve one level of parallelism i.e., in the chunk level.

It possible to get another level by subdividing the splits into several

segments and distributing them to separate GPUs. Therefore, we

assign the number of GPUs as the number of segments and

perform the segment’s computational tasks separately on each

GPU. Same as previous, when all the splits in a segment are

executed, we get a partial kNN graph and after the execution of all

the segments, we get the complete the kNN graph. In Figure 5(c),

we demonstrated the basic working procedure of the proposed

computational chunking method.

Fast and Scalable kNN Search Algorithm
The proposed computational chunking is presented as an

algorithm in Figure 6 (Algorithm 2). It starts with an input matrix

(or a chunk of the input matrix, discussed later) In and produces a

kNN graph (Gk). First, the weight attribute of each edge in the

kNN graph is set to the maximum value of float (float_max) and

the number of available GPUs (nGPU) is assigned as the maximum

number of segments (segments). The computational tasks for each

of these segments are handled by separate GPUs. During the

execution of each segment, the algorithm creates an array D (for

holding a chunk of the matrix) and an additional pointer array Gk’
linked to Gk (for holding a partial kNN graph of the respective

segment) and transfers them to the device memory. Now to

compute the partial kNN graph, the algorithm executes all the

splits in each segment and subsequently all the chunks in each

split. For each chunk the algorithm invokes the Distance kernel to

compute a sub-matrix/chunk (D) and the kNN Kernel to compute

an intermediate kNNs list. This list eventually becomes a partial

Figure 6. Pseudocode for the proposed scalable kNN search algorithm on GPU. The algorithm receives an input matrix (or a chunk of input
matrix) In and produces a kNN graph (Gk). It divides the complete distance matrix into small sub-matrices (‘‘chunks’’) and after computing all the
chunks in a split, a partial kNN graph is derived which eventually becomes the final kNN graph, when all the chunks in each split and all the splits in
each segment are computed. The method has two level of parallelism, chunk level and segment level. The segment level parallelism is only applicable
when the system has more than one GPU.
doi:10.1371/journal.pone.0044000.g006

GPU-FS-kNN: A Fast and Scalable kNN Using GPUs

PLOS ONE | www.plosone.org 9 August 2012 | Volume 7 | Issue 8 | e44000

kNN graph (stored in Gk’) when all the chunks in a split and all

the splits in a segment are executed completely. Then, the Gk’ is

transferred to host and mapped to the respective location in Gk.

We padded of the original distance matrix to fit all the chunks

properly (Figure 5(c)). The padding of a matrix is a common

practice in data-parallel task execution [44]. To do this, we extend

the number of rows to n’row (Equation 1). Furthermore, for

executing the Distance kernel on different chunk sizes, we extend

the number of columns to n’col (Equation 2). It can be noted here

that the chunk size should be a multiple of data block size b so that

each CUDA block (in Distance kernel) can handle data blocks of

size (b|b) in parallel.

n’row~nchunksize|(1z(nrow{1)=nchunksize) ð1Þ

n’col~b|(1z(ncol{1)=b) ð2Þ

The basic approach (Figures 5 and 6) can be easily adapted to

other GPU-based parallel architectures; however, the kernels need

be transformed to appropriate functions to perform parallel

computation of distance and kNN’s list.

Computation of the Distance Kernel
The Distance kernel is presented as a template function in

Figure 7 (Algorithm 3) which can be adapted for several types of

distance measures, such as Euclidean or Manhattan distance or

similarity measures that are based on Pearson’s or Spearman’s

correlation. Here, each thread is responsible for computing a

single distance in the matrix. The threads are organized in a 2-

dimensional CUDA thread and block structure. Although the

Figure 7. Pseudocode for the Distance Kernel. We present the Distance kernel as a template function which can be used for several types
distance measures (such as Euclidean or Manhattan distance etc.) or similarity measures (such as Pearson’s correlation). Here, one thread is responsible
for computing a single distance. The threads are organized as a set of two dimensional blocks and grids. Although the algorithm and the thread
organization are adapted from Chang et al. [23,24], we modified them to compute a chunk of the distance matrix instead of the complete distance
matrix.
doi:10.1371/journal.pone.0044000.g007

GPU-FS-kNN: A Fast and Scalable kNN Using GPUs

PLOS ONE | www.plosone.org 10 August 2012 | Volume 7 | Issue 8 | e44000

basic algorithm and the thread organization is adapted from

Chang et al. [23,24], we modified it to compute a chunk of the

distance matrix instead of the complete distance matrix.

The working procedure of the algorithm is simple, during each

iteration, every thread block loads (b|b) sized data blocks from the

input matrix (In) to two single dimensional shared memory arrays

X and Y. Please note that the data in array X is loaded as the

transpose of Y to reduce the number of bank conflicts in shared

memory access[23]. After loading all the data blocks, each thread

starts to calculate and accumulate its own partial distance in d.

When the all the distances are finalized and threads are

synchronized, each of them stores the value of d into the

appropriate location in D.

It can be further noted that the algorithms in [23,24] are

designed to work only with the data sets where the number of rows

and columns are multiples of 16 only (i.e., the data block size,

b = 16). This limitation was imposed so that all threads in any half-

warp (a warp = 32 threads) can access the data in a sequence. We

modified the original algorithm by introducing padded input

matrix rows and columns (see Equation 1 and Equation 2) so that

the algorithm can work with any number of rows and columns.

Computation of the KNN Kernel
The kNN Kernel algorithm presented in Figure 8 (Algorithm 4)

utilizes an 1-dimensional thread and block structure. Here, each

thread works on a single row (chunk) and identifies the k-nearest

neighbors for respective row index, where an array Maxk holds the

location of the farthest k-neighbor. For each row index (chunk) the

respective farthest k-neighbor is investigated and replaced if the

distance to any element [i], i/1 . . . nchunksize is found smaller.

However, every index is not checked, rather based on the position

of chunk in the original distance matrix the algorithm skips certain

indices, for example, it excludes the diagonal indices (i.e., the

distance from the point itself) for the chunks in diagonal positions

and similarly it exclude the indices of the extra (pad) regions in the

original distance matrix (Figure 5).

Conclusions
The source code of the proposed GPU-based fast and scalable k-

nearest neighbour search technique (GPU-FS-kNN) is available at

https://sourceforge.net/p/gpufsknn/ under GNU Public License

(GPL). Additionally, a part of the code is provided in the File S1 to

demonstrate the CUDA kernels. The code can be compiled using

NVIDIA CUDA compiler driver nvcc release 3.0 and up. It will

require OpenMP support (‘‘-fopenmp –lgomp’’) to handle multiple

GPUs and Boost library [45] to parse the input files. For

convenience, we provided a makefile and a sample data set in the

source code directory.

Outcome of our proposed tool can be used to generate

approximate minimum spanning trees (AMST), minimum span-

ning forests (MSFs) [46] or clusters from large-scale biological data

sets, such as microarrays[15]. The method is fairly scalable to

large-scale data sets (tested with over 1.5 M elements). However,

the main limitation of the current implementation is that it

requires the complete data set to be in the device memory and

when it is not possible to fit, the implementation becomes

infeasible. Therefore, to improve the scalability, we plan to

implement a data chunking along with the computational chunking

Figure 8. Pseudocode for the kNN Kernel. The kNN kernel algorithm utilizes one dimensional block and thread structure. Each thread works on a
row of the chunk and identifies the k-nearest neighbors for each respective row index. Additionally, based on position of the chunk, it skips certain
indices, e.g., the diagonal distance values (i.e., the distance from the point itself) and values that fall into the extra (padding) regions of the matrix.
doi:10.1371/journal.pone.0044000.g008

GPU-FS-kNN: A Fast and Scalable kNN Using GPUs

PLOS ONE | www.plosone.org 11 August 2012 | Volume 7 | Issue 8 | e44000

of the distance matrix. A similar approach is presented in Li et at.

[47] for computing large-scale distance matrices, where the

authors have used a method similar to Map-reduce [48]. However,

we propose to perform the chunking using external memory

algorithms [49] so that the data can be handled even when it does

not fit into host memory. One simplistic approach to achieve this

could be splitting the input matrix horizontally into n number of

data chunks (which could be in external memory for very large

instances) and then sending a set of data chunks to the device for

distance and kNN computations (see Figure 5(d)). Although the

increased number of data transfers between the host and device

can cause further slowdowns, a CUDA based data streaming (i.e.,

overlap of kernel execution and data transfer, see [19]) can be

applied to reduce such transfer overhead.

Supporting Information

File S1 Documented source code and description of the test data

format.

(PDF)

Acknowledgments

The authors would like to thank Dr. Manuel Ujaldón, for his constructive

feedbacks on an earlier version of this manuscript.

Author Contributions

Conceived and designed the experiments: ASA CR PM. Performed the

experiments: ASA. Analyzed the data: ASA RB PM. Contributed

reagents/materials/analysis tools: ASA CR. Wrote the paper: ASA RB

CR PM.

References

1. Samet H (2005) Foundations of Multidimensional and Metric Data Structures

(The Morgan Kaufmann Series in Computer Graphics and Geometric

Modeling). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
2. Knuth DE (1973) The Art of Computer Programming, Volume III: Sorting and

Searching. Addison-Wesley.

3. Bentley JL (1975) Multidimensional binary search trees used for associative
searching. Commun ACM 18: 509–517.

4. Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1998) An optimal

algorithm for approximate nearest neighbor searching fixed dimensions. J ACM
45: 891–923.

5. Brito M, Chvez E, Quiroz A, Yukich J (1997) Connectivity of the mutual k-

nearest-neighbor graph in clustering and outlier detection. Statistics &
Probability Letters 35: 33–42.

6. Dasarathy BV (2002) Handbook of data mining and knowledge discovery. New

York, NY, USA: Oxford University Press, Inc., chapter Data mining tasks and
methods: Classification: nearest-neighbor approaches. 288–298.

7. Belkin M, Niyogi P (2003) Laplacian Eigenmaps for dimensionality reduction

and data representation. Neural Computation 15: 1373–1396.

8. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear
embedding. SCIENCE 290: 2323–2326.

9. Choset H, Lynch K, Hutchinson S, Kantor G, Burgard W, et al. (2005)

Principles of Robot Motion: Theory, Algorithms and Implementation. MIT
Press.

10. Sankaranarayanan J, Samet H, Varshney A (2007) A fast all nearest neighbor

algorithm for applications involving large point-clouds. Comput Graph 31: 157–
174.

11. Jung HY, Cho HG (2002) An automatic block and spot indexing with k-nearest

neighbors graph for microarray image analysis. In: Proc. of the European
Conference on Computational Biology (ECCB), Supplement of Bioinformatics.

141–151.

12. Bayá AE, Granitto PM (2010) Penalized k-nearest-neighbor-graph based metrics
for clustering. CoRR abs/1006.2734.

13. Maier M, Hein M, Luxburg UV (2007) Cluster identification in nearest-

neighbor graphs. Technical report, Max Planck Institute for Biological
Cybernetics, Tubingen, Germany.

14. Huttenhower C, Flamholz AI, Landis JN, Sahi S, Myers CL, et al. (2007)

Nearest neighbor networks: clustering expression data based on gene
neighborhoods. BMC Bioinformatics 8: 250.

15. Arefin AS, Inostroza-Ponta M, Mathieson L, Berretta R, Moscato P (2011)

Clustering nodes in large-scale biological networks using external memory
algorithms. In: Xiang Y, Cuzzocrea A, Hobbs M, Zhou W, editors, ICA3PP (2).

Springer, volume 7017 of Lecture Notes in Computer Science, 375–386.

16. Inostroza-Ponta M (2008) An Integrated and Scalable Approach Based on
Combinatorial Optimization Techniques for the Analysis of Microarray Data.

Ph.D. thesis, School of Electrical Engineering and Computer Science, The
University of Newcastle, Australia.

17. Garcia V, Debreuve E, Barlaud M (2008) Fast k nearest neighbor search using

GPU. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW ‘08). 1–6.

18. Liang S,Wang C, Liu Y, Jian L (2009) CUKNN: A parallel implementation of k-

nearest neighbor on cuda-enabled gpu. In: IEEE Youth Conference on
Information, Computing and Telecommunication (YC-ICT ‘09). 415–418.

19. NVIDIA Corporation (2007) NVIDIA CUDA Compute Unified Device

Architecture Programming Guide. NVIDIA Corporation.

20. Graham N (2009) Improving the k-nearest neighbour algorithm with CUDA.
Technical report, School of CSSE, The University of Western Australia.

21. Quansheng K, Lei Z (2009) A practical GPU based kNN algorithm. In: Proc. of

the Second Symposium International Computer Science and Computational
Technology(ISCSCT’09). Academy Publisher, 151–155.

22. Satish N, Harris M, GarlandM(2009) Designing e_cient sorting algorithms for

manycore GPUs. In: Proc. of the 2009 IEEE International Symposium on

Parallel&Distributed Processing. Washington, DC, USA: IEEE Computer

Society, IPDPS ‘09: 1–10.

23. Chang D, Jones NA, Li D, Ouyang M, Ragade RK (2008) Compute pairwise

Euclidean distances of data points with GPUs. In: Proc. of the IASTED

International Symposium on Computational Biology and Bioinformatics.

IASTED, 278–283.

24. Chang D, Desoky AH, Ouyang M, Rouchka EC (2009) Compute pairwise

Euclidean distances of data points with GPUs. In: Proc. of the 10th ACIS

International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing. ACIS, 501–506.

25. Sun L, Stoller C, Newhall T (2010). Hybrid MPI and GPU approach to

e_ciently solving large kNN problems. Tera Grid Poster. URL http://www.

isgtw.org/pdfs/kNNposter.pdf. Accessed 2012 Aug 4.

26. Connor M, Kumar P (2010) Fast construction of k-nearest neighbor graphs for

point clouds. IEEE Trans Vis Comput Graph 16: 599–608.

27. Plaku E, Kavraki LE (2007) Distributed computation of the kNN graph for large

high-dimensional point sets. J Parallel Distrib Comput 67: 346–359.

28. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, et al. (2002) A gene-

expression signature as a predictor of survival in breast cancer. The New

England Journal of Medicine 347: 1999–2009.

29. Van T Veer LJ, Dai H, Van De Vijver MJ, He YD, Hart AAM, et al. (2002)

Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:

530–6.

30. Fayyad UM, Irani KB (1993) Multi-Interval Discretization of Continuous-

Valued Attributes for Classification Learning, Morgan Kaufmann, volume 2:

1022–1027.

31. Cotta C, Sloper C, Moscato P (2004) Evolutionary search of thresholds for

robust feature set selection: Application to the analysis of microarray data. In:

Raidl GR, Cagnoni S, Branke J, Corne D, Drechsler R, et al., editors,

EvoWorkshops. Springer, volume 3005 of Lecture Notes in Computer Science,

21–30.

32. Cotta C, Langston M, Moscato P (2007) Combinatorial and algorithmic issues

for microarray analysis. In: González T, editor, Handbook of Approximation

Algorithms and Metaheuristics. Chapman & Hall/CRC Press.

33. Berretta R, Mendes A, Moscato P (2007) Selection of discriminative genes in

microarray experiments using mathematical programming. Journal of Research

and Practice in Information Technology 39: 4.

34. Berretta R, Costa W, Moscato P (2008) Combinatorial optimization models for

finding genetic signatures from gene expression datasets. Methods Mol Biol 453:

363–77.

35. Ravetti MG, Berretta R, Moscato P (2009) Novel biomarkers for prostate cancer

revealed by (a,b)-k-feature sets. In: Abraham A, Hassanien AE, Snásel V,

editors, Foundations of Computational Intelligence (5), Springer, volume 205 of

Studies in Computational Intelligence. 149–175.

36. Rocha de Paula M, Ravetti MG, Berretta R, Moscato P (2011) Differences in

abundances of cell-signalling proteins in blood reveal novel biomarkers for early

detection of clinical alzheimers disease. PLoS ONE 6: e17481.

37. Boulay PL, Schlienger S, Lewis-Saravalli S, Vitale N, Ferbeyre G, et al. (2011)

ARF1 controls proliferation of breast cancer cells by regulating the retinoblas-

toma protein. Oncogene 30: 1038–61.

38. Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, et al. (2003) Antiestrogen

resistance in breast cancer and the role of estrogen receptor signaling. Oncogene

22: 7316–7339.

39. Pinnix Z, Miller L,Wang W, D’Agostino Jr R, Kute T, et al. (2010) Ferroportin

and iron regulation in breast cancer progression and prognosis. Sci Transl Med

2: 43ra56.

40. Pogribny IP (2010) Ferroportin and hepcidin: a new hope in diagnosis,

prognosis, and therapy for breast cancer. Breast Cancer Research 12: [Epub

ahead of print].

GPU-FS-kNN: A Fast and Scalable kNN Using GPUs

PLOS ONE | www.plosone.org 12 August 2012 | Volume 7 | Issue 8 | e44000

41. Miller L, Coffman L, Chou J, Black M, Bergh J, et al. (2011) An iron regulatory

gene signature predicts outcome in breast cancer. Cancer Res 6728–6737: 625–
639.

42. Kell DB (2010) Towards a unifying, systems biology understanding of large-scale

cellular death and destruction caused by poorly liganded iron: Parkinsons,
huntingtons, alzheimers, prions, bactericides, chemical toxicology and others as

examples. Archives of Toxicology 84: 825–889.
43. Chandra R, Dagum L, Kohr D, Maydan D, McDonald J, et al. (2001) Parallel

programming in OpenMP. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc.
44. Bell N, Garland M (2009) Implementing sparse matrix-vector multiplication on

throughput-oriented processors. In: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. New York, NY,

USA: ACM, SC ‘09, 18:1–18:11.
45. Siek J, Lee LQ, Lumsdaine A (2000). Boost random number library. Software

library. URL http://www.boost.org/users/download/. Accessed 2012 Aug 4.

46. Arefin AS, Riveros C, Berretta R, Moscato P (2012) knn-borvka-gpu: A fast and

scalable mst construction from knn graphs on gpu. In: Murgante B, Gervasi O,

Misra S, Nedjah N, Rocha AMAC, et al., editors, ICCSA (1). Springer, volume

7333 of Lecture Notes in Computer Science, 71–86.

47. Li Q, Kecman V, Salman R (2010) A chunking method for euclidean distance

matrix calculation on large dataset using multi-gpu. In: Proceedings of the 2010

Ninth International Conference on Machine Learning and Applications.

Washington, DC, USA: IEEE Computer Society, ICMLA ’10: 208–213.

48. Pike R, Dorward S, Griesemer R, Quinlan S (2005) Interpreting the data:

Parallel analysis with Sawzall. Sci Program 13: 277–298.

49. Dementiev R, Kettner L, Sanders P (2008) STXXL: standard template library

for XXL data sets. Softw Pract Exper 38: 589–637.

50. Pavlopoulos GA, Wegener AL, Schneider R (2008) A survey of visualization

tools for biological network analysis. BioData Mining 1: 12.

GPU-FS-kNN: A Fast and Scalable kNN Using GPUs

PLOS ONE | www.plosone.org 13 August 2012 | Volume 7 | Issue 8 | e44000

